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The flows of a Maxwellian fluid between two rotating coaxial disks and about a 
rotating disk are discussed. Asymptotic solutions are derived and numerical solutions 
are reported for a Weissenberg number up to 10 and a Reynolds number of up to 
50. The solutions show transverse wave propagation. Also, a t  low Weissenberg 
number the moment coefficient for a rotating disk wetted on both sides is inversely 
proportional to the square root of the angular velocity of the disk. At high 
Weissenberg number it is inversely proportional to the angular velocity of the disk. 
The transition occurs a t  a Weissenberg number of unity. 

1. Introduction 
We consider the flow of a viscoelastic fluid between two rotating parallel and 

infinite coaxial disks. The flow is of considerable interest to rheologists in that i t  
models the dynamics of the so-called ' parallel-plate viscometer ' (Walters 1975). The 
corresponding problem for a Newtonian fluid has a long history, dated back to the 
Karman solution (Karman 1921) and has been discussed by Cochran (1934), 
Batchelor (1951), Stewartson (1953) and Benton (1966). At high Reynolds number 
(based on the gap thickness) it is known that there are bifurcation points (Holodniok, 
KubiFek & HlavLFek 1977), but we are not concerned with this aspect of the problem. 

The corresponding flow problems for non-Newtonian fluids have been considered 
by various authors. Rathna (1962) used the momentum-integral method to investigate 
the flow of a second-order fluid about an infinite rotating disk. Her results have been 
criticized by Williams (1976) in that they predict a flow reversal a t  a sufficiently large 
distance from the disk. Williams also gave perturbation solutions (in terms of the 
Weissenberg number) to the flow of a second-order fluid and and an Oldroyd fluid B 
about an infinite rotating disk. For the range of parameter values used, he concluded 
that there is only a slight departure from Newtonian behaviour, although the 
small-time analysis indicates some marked transient non-Newtonian effects in the 
early development of the flow. The steady coaxial-disk flow has been considered by 
Griffiths, Jones & Walters (1969), using a third-order fluid model, by Bhatnagar & 
Zag0 (19781, using a second-order fluid model, and recently by Bhatnagar & Perera 
(1982) using an Oldroyd 4-constant model. However, in the latter reference the stress 
representation reported by Bhatnagar & Perera can only be considered as truncated 
power series in the radial coordinate - we will return to this point later - and i t  is 
not known of the error involved in leaving out terms 0 ( r 3 )  and higher in the stress 
representation. 

I n  this paper we consider the flow problems for a Maxwellian fluid. It will be shown 

t Present address: Department of Chemical Engineering, Caltech, Pasadena, CA 91 125. 
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that  there exist exact solutions, in the sense that the governing equations can be 
reduced to a set of quadratures in the z-coordinate at steady state, or to a set of partial 
differential equations in the z- and t-coordinate. Three cases will be discussed : when 
one disk is a t  rest, when both disks are rotating in the same direction and when the 
distance between the disks is infinitely large (flow about a rotating disk). Appropriate 
asymptotic solutions are developed for these cases. Full numerical solutions are also 
reported for a Weissenberg number up to 10 and a Reynolds number up to 50. Our 
choice of the constitutive model is motivated by the fact that, aside from its being 
capable of having exact solutions for the flow problems considered, most numerical 
schemes (finite-element or otherwise) employing the Maxwellian model do not 
converge at all at a global Weissenberg number exceeding a critical value of the order 
of unity (Pearson 1982). It is not known whether this lack of convergence is due 
inherently to the model or to the numerical scheme employed. Having an exact 
solution in a non-trivial flow geometry a t  least enables one to trace back the working 
of the computer program. Hopefully this will shed additional insight into an otherwise 
untractable problem. Furthermore, the Maxwellian model does describe most observed 
non-Newtonian effects qualitatively, at least for the so-called Boger’s fluid (a dilute 
solution of polyacrylamide in a mixture of water and maltose syrup - Boger 1977/78) 
at steady flow conditions. The conclusions of this paper are expected to apply to those 
fluids. 

2. Formulation 
The problem we are concerned with is that of a viscoelastic fluid contained between 

two parallel coaxial disks. The bottom plate rotates at angular velocity S Z ,  and the 
top plate rotates a t  angular velocity R,. Both plates are set in motion at the instant 
of t = O +  . The thickness of the lubricant film is d. The fluid is assumed to be 
incompressible, so that V . u = 0, and the equation of motion is V . ts = p DulDt, where 
u is the velocity vector, IS is the stress, p is the density of the fluid and DIDt is the 
material time derivative. Body forces are ignored here. The constitutive equation for 
the fluid is written in terms of the extra stress tensor S, where IS = S- PI, P being 
the pressure and I the unit tensor. The lubricant is assumed to be a Maxwellian fluid; 
that is, if the velocity gradient is L = VuT and the strain rate is D = a( L + LT), where 
T denotes a transpose, then the extra stress S is given by 

S +h(a, S + u . VS - LS - SLT) = 27D, ( 1 )  

in which h is the relaxation time and p is the viscosity of the liquid. Using a cylindrical 
coordinate system ( r ,  8 ,  z )  with the origin fixed at the centre of the bottom plate, and 
z the axis of symmetry, the relevant boundary conditions for the velocity field 
u = (u, v,  w) are 

( z  = 1 u = w = 0, 

u = w = 0, 

w = rQ, 

w = rR, ( z  = d ) .  

For time t < 0, both disks are at rest and we assume that 

u(x,t) = 0 (--a< t < 0, all x). 

It will be shown that the classical solution of Karman (1921), where 

u = ( ra ,H,  r G , - 2 H ) ,  (3) 
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still holds. I n  (3) H and G are functions of z and t ,  both to be determined. When (3) 
is substituted in the constitutive relation (1) we obtain for the stresses 

Srr + h(d, S,, + r a, Ha ,  Sr,- 2H a, S,, - 2 4 ,  a, H -  2 r 4 ,  a,, H )  = 27 a, H ,  

s,, + h(a, 4, + r a, H a, s,,- 2~ a, s,, - 2 4 ,  a,  H -  r s,, a,, H -  r s,, a, G )  = 0,  

srz+ h(a, s,, + r a, H a,  s,,- 2~ a, s,, + s,, a, H -  r s,, a,, H )  = ?razz H ,  

s,, + A ( a ,  s,, + r a, H a,  so,- 2~ a, s,, - 2sz,a, H -  2 r ~ , ,  a, G) = 27 a, H ,  

s,,+ h(a, s,, + ra,  Ha ,  s,,- 2118, s,,+ s,,a, H -  rs,, a, G) = Tr a, G, 

s,, +h(a, s,, + r a, ~a,s,, - 2~ a, s,,+ 4s,, a, H )  = -47 a, H .  

2.1. Coaxial-disk flow 

When both disks are rotating a t  different angular velocities, we find i t  convenient 
to non-dimensionalise z by the film thickness d ,  and time t by R2-i2,, viz 

6 = f  7 =  (SZ,-rz,)t. 
d '  

Furthermore, the velocities can be non-dimensionalized according to 

G(z,  t )  = (a2 - a,) g ( Y ,  7) +a,, 
H ( z ,  4 = (a2 - a,) dhK, 7). 

In  terms of these dimensionless variables, i t  is found that a possible representation 

r A  s,, = 7(Q,-nl)  dOZj 

/4 

s,, = 7@2 - Q,) zz, 
h 

where ij; i , j  = (R, 0 , Z )  are functions of 6 and 7 and are given by 

a,+ Wi(Rho-2hR~;-2h'R^Ro) = 2h', (4 )  

RR, + Wi(RR,  - 2hRhR; - 2h"RhZ) = 0,  

&+ Wi(h-'?h&'-h"a-g'R%) = 0, (6) 

& + W i ( R 3  - 2hR2' + 2 h ' S  - h Z 2 )  = h", 

B^Bo + Wi(O0, - 2h030 - 2h'00,) = 2h', 

A A 
( 5 )  

(7) 

(8) 
A h 

t This stress representation can be derived directly from the history of the particle path, using 
(3) and the equivalent integral Maxwellian model. 
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2, + W i ( G 1  - 2h83; - 2 9 ’ 6 )  = 0 ,  (9) 

8^z+ Wi(Bh-2h8%‘+2h’8~-gfZ%) = g’, (10) 

ẑ z+ Wi(&-2h2%‘+4h‘Z?) = -4h‘. ( 1 1 )  

I n  (4)-(11)  W i  is the Weissenberg number defined by 

wi = h(Q,-Q,), 

and we have used the shorthand notation (-) and ( )’ for 7- and 5-derivatives 
respectively. Note that the stress representation is identical with that of Williams 
(1976) ,  who considered an Oldroyd B-fluid, except that  in the latter a quadratic term 
in r is required in S,,. Conservation of linear momentum requires 

in the radial direction, 

1 a p  r * *  
- - = ~(n, - R,) -{4R8 + Or- Re[g+ 2h’(g+ w )  = Bhg‘]} 
r ae d2 

1 ^ b  

in the 8-direction, 

- = v(a,-Q,) , {2RZ+ZZ’+BRe[h+2hh’]} in the z-direction. 
aP 
az 

Axisymmetry requires that 
A A  

4RB+BZ’-Re(g+2h’(g+o)-2hg’)  = 0. 

Compatibility between a, P and a, P requires that 

A A h  

= 3RRl-88,+RZ’-Re(h‘+h’2-(g+w)2-2hh”) (13) 

is a function of time only. Alternatively 
A A h  

3RR’,-cW;+RZ”- R e ( h ” - 2 ( g + w ) g ’ - 2 h h )  = 0.  (13 bis) 

I n  (12)  and (13)  Re = p(Q2-Q1) d 2 / v  is the Reynolds number based on d and a2-R1,  
and w = l2,/(Q2-Q1) is the dimensionless velocity of the bottom disk. 

Equ~tions~4)-(12)  are a system of 10 ordinary differential equations (in fact 9 
since 08, = RR, if initial conditions of both are the same), which, subject to the 
boundary conditions 

g = O = h = h ‘  ( 5 = 0 ,  7 > 0 ) ,  g = 1 ,  h = h ’ = O  (5=1,  7 > 0 ) ,  (14) 

and the initial conditions 
9 = 0 = h = h’ = $ (7 < O) ,  

represent an exact solution to the flow of a Maxwellian fluid between two coaxial 
rotating disks. Note that the boundary conditions need not be time-independent. 

2.2 .  Flow about a rotating disk 

I n  the special case where there is only one rotating disk (or when d ~ o o ) ,  there is 
no natural lengthscale. However, a derived lengthscale can be defined from the 
angular velocity R of the disk, and the kinematic Giscosity v = v / p  of the fluid. Thus, 
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instead of non-dimensionalizing all variables with respect to SZ2-SZ2, and d ,  we 
non-dimensionalize them with respect to SZ and the lengthscale ( u / n ) ; :  

The representations for the stresses remain the same as before, except that SZ2 - SZ, 
and d are replaced by SZ and (u/Q)+ respectively. The constitutive relations read 
exactly the same, viz (a)-( 1 l), but with the Weissenberg number 

wi = ha. 

However, the conservation of linear momentum requires 

Note that the radial pressure gradient is zero because the far-field conditions (at 
i- > 00)  are quiescent. For initial conditions we again assume that the flow is a t  rest 
up to time i- = 0. From then on the following boundary conditions apply: 

I g =  1, h = h ' = O  ( < = O ) ,  

g = O ,  h'=O (<=a). 

The solution of (4)-(11) and (16) and (17) subject to initial conditions (15) and 
boundary conditions (18) constitute an exact solution to the flow of a Maxwellian 
fluid about a rotating disk. Note that the solutions reported above are valid even 
if the boundary conditions are given by some prescribed functions of time. 

3. Some asymptotic results 
3.1. Small Weissenberg and Reynolds numbers 

It is known that the regular perturbation solution for the steady flow of a Newtonian 
fluid between two coaxial rotating disks is rapidly convergent, as long as the Reynolds 
number is less than about 10, (Stewartson 1953). Thus we expect the perturbation 
solution a t  low Reynolds and a t  low Weissenberg numbers to be useful. I n  this limit, 
on expressing all variables as power series in W i  and Re we obtain 

g = <+&Re W i  (6- 3P + 2P +5w[C4 -2c+ PI) 
+ &Re2{ -&c +&c5 - &? - &C-w [fC5 - %c4 - $c +#a - 5w2 [$c5 - +c4 + ic - &a} 

+ higher-order terms, 

h = -&Re {c5- 3Yj + 2P + 5w[C4 - 2P + PI} + higher-order terms. 

Of interest to  the experimentalists are the radial pressure gradient, given through 
(13), the dimensionless torque on the top plates 

and the dimensionless torque on the bottom plates 
A 

Tb = Ozll,o, 
where a is the common radius of the disks. 
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Retaining only lowest-order terms, i t  is found that 

p = (&+w+w2)Re-2Wi, 

= 1+&Re2(1-ww+$u2),  

Tb = 1 - & R e 2 ( 1 + v w - ~ 2 ) .  

For w = 0 (the bottom disk a t  rest) the torque experienced by the top plate is greater 
than that on the bottom plate. This behaviour has been noted by Griffiths et al. (1969), 
who employed a third-order fluid model. 

3.2. High Weissenberg number 
Under a normal operating condition of the parallel-plate viscometer most non- 
Newtonian fluids have a high Weissenberg number and a low Reynolds number. I n  
the limit of high Wi and low Re the fluid behaves like an elastic solid and we feel 
that  g = O(1) and h = o(1). To support this conjecture we define a new coordinate 
p = B<, where E = (Re12 Wi)i in the case of two rotating coaxial disks, and E = (2 Wi)-i 
in the case of one rotating disk. I n  the former case, assuming g = go + o( 1) and h = o( l), 
we have (at steady state) g 2 - ( g o + w ) 2  = constant, 

where the prime denotes a derivative with respect to p. For w = 0 (bottom disk at 
rest) the solution to the above equation that has go(0) = 0 and go(l)  1 is 

Note that the limit of e = 0 can be thought of as the limit of zero Reynolds number, 
and thus one should recover the Couette limit when E = 0. Furthermore, the leading 
terms in p and dimensionless torques are 

€2 

sinh2 6’  
p = - 2 W i -  

Equation (21) is remarkably similar to (19) when w is set to zero in the latter. The 
possibility of using the radial pressure gradient to measure the first normal-stress 
coefficient has been mentioned by Good, Schwartz & Macosko (1974). In  view of the 
similarity between (19) and (21) this method of measuring normal-stress coefficient 
based on either (19) or (21) seems valid for a wide range of the Weissenberg number. 

I n  the case of the flow about one rotating disk we find that the same governing 
equation for go holds, except that  w = 0 and E = (2 Wi)-k. The only solution that 
satisfies go(0) = 1 and go(oo)  = 0 is 

go(<) = exp ( - €5). (22) 

The moment coefficient for a disk wetted on both sides can be defined as (at 
steady state) 

Btorque - 27rG(O) v 4 
c, = &&?2a5 ---A& 

where a is the radius of the disk. I n  this case we have, retaining only the leading terms, 

C, = 2n(2 WiRe,)-B, (23) 
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where Re, = a2SZ/v is the Reynolds number based on a and IR. Thus a t  high 
Weissenberg number the moment coefficient is inversely proportional to (for a 
Newtonian fluid it is inversely proportional to a?). Note that the boundary-layer 
thickness in the limit of high Wi is of the order (hv);. 

3.3.  Both disks rotating i n  the same sense 
If both disks are rotating in the same sense with the same angular velocity a,, then 
a possible solution is G = a, and H = 0 (rigid-body rotation). If IR,-R,I is small, 
we may express the flow variables in powers of ct = ( ! 2 , - C l 2 ) / ( ~ , + Q , ) :  

G = +(Q,+a,) ( 1  +ag(C,7)+O(a2)) ,  

H = +(a, +a2) d(ah(<, 7) + O(a2)).  

Substituting in the governing equations and neglecting terms O(a2) and higher we 
have (at steady state) 

d2(Q +a,) 
27 

p = R e = '  , 

h"'+2Reg = 0, (24)  

g"-2Reh' = 0.  (24 bis) 

sinh (Re?( 1 - i) (4 - 5))  
sinh (;Bet( 1 - i)) 

The solution to (24)  is 
g+ih' = ' 

This solution is identical with the Newtonian solution given by Stewartson (1953) .  
At high Reynolds number, (25)  indicates that there will be an Ekman layer of 
thickness O ( R e d )  near each disk. However, if the boundary data are periodic in time 
with small (O(ct)) amplitude and with frequency f then i t  is easy to show that, a t  O(a),  
the constitutive equation is the familiar linear viscoelastic model. I n  this case the 
governing equations can be Fourier-transformed and it can be shown that the 
thickness of the Ekman layer is O ( R e d ) ,  where now 

in which 7* = y / ( l  +ihf) is the complex viscosity of the fluid. This statement can 
be immediately generalized to the general case of a rotating simple fluid, which has 
been discussed in detail by Joseph (1977).  Note that a t  high frequency the thickness 
of the boundary layer is O((Af)-?). 

4. Numerical solution 
To support the asymptotic results we carry out numerical integrations of the 

governing equations for some values of the Weissenberg and the Reynolds numbers. 
Based on some success we have in the squeeze-film and the stagnation problems of 
the same fluid (Phan-Thien & Tanner 1983; Phan-Thien 1982), we treat the present 
problem as a time-dependent one. We use central-difference formulae for spatial 
derivative and employ an explicit time-integration scheme which starts a t  some 
initial conditions and stops when the flow is judged to be steady (i.e. when the value 
of p is unchanged to  three significant figures), or when time 7 is greater than 20. On 
the <-axis (0 < 5 < I, where 1 = 1 for the coaxial-disk flow, and 1 is of order 5-10, 
depending on the Weissenberg number, for the flow about a rotating disk) we select 
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equispacednodalpointsat& = ( i - l )Ah , i  = 1 ,  ..., N+l,whereAh = l/N,Nbeingthe 
number of intervals from 0 to 1. Second-order finite-difference formulae for 
<-derivatives are employed for each field variable. At < = 0 and a t  < = 1 we impose 
the boundary conditions (14) or (18). For the coaxial-disk flow problem we have from 
(13 bis) (denoting by $7 the value of the field variable @ a t  time 7 = nAr and a t  = ci) 

N-1 

C. Aii hj" = a known ( N -  1) vector, 
j=1 

where A is the Rouse [ N -  1 ,  N -  11 matrix 

2 (i =j), 

-1 ( i = j k l ) .  

Since the inverse of the Rouse matrix is the Kramers matrix 

The equations for h? can be inverted to give hr. To update the field variables (9 ,  
h' and the stresses for the flow about a rotating disk ; h is then found by a trapezoidal 
rule from h') we employ the following explicit schemes: if 

then @i is updated using 

@?+l = @ p + A 7 [ a ,  fi(vv",r)+a,fi(Y,r+A7], 

where = vn +AT f(vn, 7). For a, = 1 and a, = 0 the scheme is the classical first-order 
Euler method which is accurate to O(AT) and requires only one derivative evaluation 
per time step. For a,  = a2 = fr we have the second-order Huen method, which is 
accurate to @AT') but requires two derivative evaluations per time step. Most results 
reported in this section were obtained using Huen's method (AT z 0 ~ 0 1 4 0 0 1  and 
Ah = 0.1-0.02). All calculations were done on a Cyber machine that retains 15 
significant figures. 

To evaluate the dimensionless radial pressure gradient for the coaxial-disk flow 
we find that a straightforward finite-difference solution of equation (13) is very 
inaccurate. A better way t o  compute the spatial average of (13) is 

-I%, + R e [ ( g +  w)' - 3hh"l) d<+ R%ls=l - 

4.1. Coaxial-disk flow 

Starting the numerical scheme at the initial conditions (15), we find that the 
steady-state solution for small Weissenberg and small Reynolds numbers ( W i  < 1 ,  
Re Q 2) is substantially as predicted by the perturbation solution. I n  fact, a t  Wi = 1 
and Re = 2 the perturbation solution predicts that  the dimensionless radial pressure 
gradient should be - 1*4+ O(Re2, Re Wi,  Wiz) ,  whereas our numerical solution shows 
p = - 1.36. We show in figure 1 the steady-state velocity field a t  a Weissenberg 
number of 1 and different Reynolds numbers up to 50. Note that a t  high Reynolds 
number and low Weissenberg number there is a thin boundary layer near the rotating 
disk, and the bulk of the fluid is a t  rest. The flow in this limit is qualitatively similar 
to  that  of a Newtonian fluid, which has been discussed by Stewartson (1953). 
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FIGURE 2. Dimensionless radial pressure gradient -p /2  Wi at different values of E = (Re /2  Wi)?: 
--, asymptotic solution (small E ) ;  ---, regular perturbation solution (small Re and small Wi). 
Numerical data: A, Wi = 0 1 ;  +, 0 5 ;  0 ,  1; 0, 2; 0, 10. 

At high Weissenberg number and low Reynolds number, in the sense that 
e = (Re/2 Wi)t is small, we have the asymptotic results (20) and (21). We find that (20) 
describes the velocity well for values of fz up to  0.3 (the largest Weissenberg number 
that still maintains the stability of our numerical scheme is 10). However, even at 
a value of E = 0.7 (Re = W i )  and at W i  = 10 the asymptotic formula (21) forp remains 
extremely accurate (see figure Z), although the velocity field cannot be described 
accurately by (20). Thus i t  seems that as far as pressure measurements are concerned 
the simple formulae (19) or (21) are accurate enough for a wide range of Weissenberg 
number provided that E = (Re/2 Wi); is less than 0.7, or that both the Weissenberg 
and the Reynolds number are small ( W i  < 1 ,  Re < 2). 

4.2. Flow about a rotating disk 
Based on the Newtonian solution (Cochran 1934) we choose I = 5 for W i  < 1. 
Steady-state solution can be obtained without any numerical problem for Wi < 1 and 
these results are displayed in figure 3. At high Weissenberg number our asymptotic 
result (22) indicates that  the bulk of the fluid will rotate as a rigid body. (This is not 
a surprising result, since in this limit the fluid behaves like an elastic solid.) Thus for 
W i  from 1 to 10 we choose I = 10. For impulse-started initial conditions (g = 1 a t  f: = 0 
and t 2 0 + )  it  is clear that  the fluid transmits a transverse wave which propagates 
through the flow field. From Tanner's (1962) solution of the Rayleigh problem we 
expect that  the transverse wave speed is Wi-i. This agrees well with the numerical 
solutions. In  figures 4 and 5 we plot the angular velocity at different times for two 
values of the Weissenberg number. To capture these waves accurately, the spatial 
discretization must be small (Ah z 002-0*01), and therefore the computing time is 
rather long (the information displayed in figure 5 took approximately 1 h of 
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FIGURE 3. Steady-state velocities for the flow about a rotating disk: -, Wi = 0; +, 0 1  ; 0, 1 ; 
A, 2. The boundary-layer thickness first decreases and then increases with Wi. The magnitude of 
the secondary flow decreases with Wi. 

computing time on the Cyber). To overcome this problem partly the angular velocity 
of the disk can be slowly increased from 0 to 1. We adopt the simple time-dependent 
angular velocity g(0) = 7 / W i ,  0 < 7 < Wi and g(0) = 1, 7 > Wi. The slope of the 
shear wave is roughly - Wi-4 and the spatial discretization can be increased to 0-05. 
I n  figure 6 we show the time evolution of the angular velocity at a Weissenberg 
number of 10. For this case the boundary layer (distance for which g decays to 0.1) 
is roughly 10, from the asymptotic solution (22). The viscoelastic waves will have 
implications in numerical schemes that employ a timelike integration of the consti- 
tutive equations. I n  these schemes any numerical noise will propagate and reflect from 
the boundaries as waves, and i t  is not inconceivable that a t  high Weissenberg number 
(remembering that the wave speed is proportional to Wi-i) the wave will persist for 
a long time, which tends to  produce more numerical noise and eventually destroys 
the convergence of the scheme. Finally, of interest to the experimentalist is the 
moment coefficient for a rotating disk wetted on both sides. On figure 7 we plot 
C, Re!, where Re, = pQa2/q is the Reynolds number based on the radius a of the 
disk, versus the Weissenberg number. The Newtonian value 3.87 and the asymptotic 
result (23) are also shown on the graph. It is remarkable that the asymptotic result 
(23) is extremely accurate for Wi > 1 ( E  = (2 Wi)-i < 0.7). Since both Re, and Wi are 



438 N .  Phan- Thien 

FIGURE 4. Time-dependent angular velocity at Wi = 1. The flow is impulsively 
started. Note that the traversed wave speed is approximately I .  

proportional to the angular velocity SZ one should see a'transition from C, K SZ-6 
for Newtonian fluid to C, K P1 for highly elastic fluid. This transition occurs a t  
a Weissenberg number of unity and should be subjected to experimental verification. 

5. Final remarks 
It is worthwhile mentioning that the Karman's solution (3) is also an exact solution 

to the second-order fluid model. Since the steady coaxial-disk flow of this fluid has 
been studied by Bhatnagar & Zag0 (1978) and since it has some unpleasant stability 
properties in unsteady flows, we shall not carry out the full numerical solution here. 
Instead, we note that the counterpart of (19) is 

where ui,  i = 1 , 2 ,  are the normal-stress coefficients. Thus if the centre of the top plate 
is connected to a small open tube then the fluid will rise in the tube to  a height of 
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t 

f 

FIGURE 5. Same as in figure 4, but a t  Wi = 5 .  The traversed 
wave speed is approximately 045 x 5-k. 

where g is the acceleration due to gravity. This centripetal pumping effect has been 
suggested as a method to measure normal stress coefficients (see e.g. Good et al. 1974), 
but its use in rheometry has not yet been investigated in detail. Furthermore, with 
a slight modification to the representation for the stresses? (Williams 1976), i t  can 
be shown that Karman’s solution is an exact solution to the Oldroyd fluid B. This 
fluid has a diffusive mechanism (retardation) and cannot transmit waves (Tanner 
1962). Our unsteady numerical scheme reported in this paper is expected to perform 
well with this model fluid. 

However, the stress representation of Williams (1976) is not an exact solution to 
either the corotational model (lower-convective Maxwell model) or the Oldroyd 
4-constant model (for a summary of these models see Bird, Armstrong & Hassager 
1977). To substantiate this remark, let us briefly consider the Oldroyd 4-constant 
model where the stress tensor S is related to the velocity-gradient tensor L by 

6 6 
st 

S + h % S + 2 p ( t r S )  D = 27D+20- D, 

t This stress representation is identical with ours, with the exception that S,, contains an addi- 
tional term which is quadratic in r .  
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5 
FIQURE 6. Time-dependent angular velocity a t  Wi = 10. The angular velocity of the disk is taken 
to be 0.17 for T < 10. From then on it remains constant at a value of 1. The slope of the shear wave 
is approximately - (~i1- t  

s - A = 13, A + u . VA - LA - ALT 
st 

where 

is the upper convective derivative, and p and # are two new material parameters; 
other symbols have the same meaning as in (1). Assuming Karman’s velocity field 
(3), one sees a t  once that the components of the stress tensor must be full power series 
in the radius. For instance, the equation for S,, reads 

S,,+h(d, S,,+rHa, 8,,-2Ha,S,,+H’S0,-rGS,,)+~(X,,+S,,+S,,) rG‘ 
= y r G  + &(a, G + 6HG - Z H G ) ,  

where the prime denotes a x-derivative. If one adopts Williams’ stress representation 
as in the work of Bhatnagar & Perera (1982), i t  then follows that the term 
(Srr + S,,+ S,,) rC’ must be cubic in r ,  because t r  S is quadratic in r .  To balance this 
term, S,, must contain a cubic term in r. Since the equations for S,, and So@ contain 
a term rS,,, S,, and S,, must have a quartic term in r and so on. Thus one finds that, 
assuming Karman’s velocity field, the stresses are given by 
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FIGURE 7.  Moment coefficient C, Rba versus the Weissenberg number: -, Newtonian value; ---, 
asymptotic result. At low values of Wi, C, Re; remains roughly constant. At high values of Wi 
( Wi 2 l ) ,  C, Re! is given by (2 Wi)-*. 

a3 

{S,,, S,,> = X r t R t 1 { R ~ n ,  e%,}, 
n=o 

A 

where i jn are some functions of z and t .  
Since the convergent properties of these power series in r have not been investigated, 

Bhatnagar & Perera’s numerical results can only be best viewed as a perturbation 
solution about r .  Similar series representation for the stresses can be shown for the 
corotational model or the ‘non-affine’ network model, which employs a mixture of 
the upper- and lower-convective derivative. Note that, if p = 0, then the series 
terminate and one obtains Williams’ solution for the stresses. 
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